13 research outputs found

    An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    Get PDF
    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that accurate, frequent, and spatially distributed estimates of the water balance are necessary for effective water management. This creates a challenge for watersheds that are large, include data poor regions, and/or span multiple nations. All of these descriptors apply to the Nile River basin, yet successful management of the Nile is critical for development and political stability in the region. For this reason, improved hydrological data to support cooperative water management in the Nile basin is a priority for USAID, the US State Department, the World Bank and other international organizations. In this project, the U.S. based research team is working with partners at RCMRD, Nile Basin Initiative (NBI), and their member national-level agencies to develop satellite-based land cover maps, satellite-derived evapotranspiration estimates (using the ALEXI algorithm), and NASA's Land Data Assimilation System (LDAS) customized to match identified information needs. The cornerstone applied sciences product of the project is the development of a customized "Nile LDAS" that will produce optimal estimates of hydrological states and fluxes, as vetted against the in situ observations of NBI and RCMRD member organizations and independent satellite-derived hydrological estimates. Nile LDAS will be applied to improve the reliability of emerging Decision Support Systems in applications that include drought monitoring, reservoir management, and irrigation planning. The end-users such as RCMRD, NBI, Ethiopian and Kenya Meteorological and Famine Early Warning System Network (FEWSNet) will be the eventual benefactors of this work. There will be a capacity building process involving the above end-user organizations and transfer the models and the results for these organizations to execute for future use. The team has already initiated this study and the early results of first years' work are shown. The plan is to complete this work by late 2013

    Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    Get PDF
    The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework

    Rapid Response Flood Water Mapping

    Get PDF
    Since the beginning of operation of the MODIS instrument on the NASA Terra satellite at the end of 1999, an exceptionally useful sensor and public data stream have been available for many applications including the rapid and precise characterization of terrestrial surface water changes. One practical application of such capability is the near-real time mapping of river flood inundation. We have developed a surface water mapping methodology based on using only bands 1 (620-672 nm) and 2 (841-890 nm). These are the two bands at 250 m, and the use of only these bands maximizes the resulting map detail. In this regard, most water bodies are strong absorbers of incoming solar radiation at the band 2 wavelength: it could be used alone, via a thresholding procedure, to separate water (dark, low radiance or reflectance pixels) from land (much brighter pixels) (1, 2). Some previous water mapping procedures have in fact used such single band data from this and other sensors that include similar wavelength channels. Adding the second channel of data (band 1), however, allows a band ratio approach which permits sediment-laden water, often relatively light at band 2 wavelengths, to still be discriminated, and, as well, provides some removal of error by reducing the number of cloud shadow pixels that would otherwise be misclassified as water

    NASA Global Flood Mapping System

    Get PDF
    Product utility key factors: Near real time, automated production; Flood spatial extent Cloudiness Pixel resolution: 250m; Flood temporal extent; Flash floods short duration on ground?; Landcover--Water under vegetation cover vs open wate

    SERVIR-Africa: Developing an Integrated Platform for Floods Disaster Management in Africa

    Get PDF
    SERVIR-Africa is an ambitious regional visualization and monitoring system that integrates remotely sensed data with predictive models and field-based data to monitor ecological processes and respond to natural disasters. It aims addressing societal benefits including floods and turning data into actionable information for decision-makers. Floods are exogenous disasters that affect many parts of Africa, probably second only to drought in terms of social-economic losses. This paper looks at SERVIR-Africa's approach to floods disaster management through establishment of an integrated platform, floods prediction models, post-event flood mapping and monitoring as well as flood maps dissemination in support of flood disaster management

    Matsu: An Elastic Cloud Connected to a SensorWeb for Disaster Response

    Get PDF
    This slide presentation reviews a system that uses the SensorWeb connected to the cloud computing, assist in disaster response, specifically flood warning in Namibia

    Namibian Flood Early Warning SensorWeb Pilot

    Get PDF
    The major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers. The Pilot Project established under the auspices of: Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs; Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS); and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management

    Using Giovanni in Investigating the Links between Environmental Processes and Drought in Northern sub-Saharan Africa

    Get PDF
    The northern sub-Saharan African (NSSA) region, bounded on the north and south by the Sahara and the Equator, respectively, and stretching East-West across Africa, is very vulnerable because of the highly active environmental and meteorological processes associated with its unique location and human activities that adversely impact the regional water cycle. Over the years, this region has suffered frequent severe droughts that have caused tremendous hardship and loss of life to millions of its inhabitants due to the rapid depletion of the regional water resources, as exemplified by the dramatic drying of Lake Chad. On the other hand, the NSSA region shows one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be one of the drivers of the regional carbon and energy cycles, with serious implications for the water cycle. An interdisciplinary research effort funded by NASA is presently being focused on the NSSA region, to better understand possible connections between the intense biomass burning observed from satellite year after year across the region and the water cycle, through associated changes in land-cover, surface albedo, emissions, atmospheric processes, precipitation, soil moisture, surface evaporation and runoff, and groundwater recharge. A combination of remote sensing and modeling approaches is being utilized to investigate these multiple processes to clarify possible links between them. However, by using Giovanni, we are able to extract and jointly analyze some of the important relevant parameters to obtain a first insight into their relationships. In this presentation, we will discuss these preliminary results as well as the path toward improved understanding of the interrelationships and feedbacks between the water cycle components and the environmental change dynamics due to biomass burning and related processes in the NSSA region

    Use of the Earth Observing One (EO-1) Satellite for the Namibia SensorWeb Flood Early Warning Pilot

    Get PDF
    The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with a messaging architecture and web services. Disasters are the perfect arena to use SensorWebs. One SensorWeb pilot project that has been active since 2009 is the Namibia Early Flood Warning SensorWeb pilot project. The Pilot Project was established under the auspices of the Namibian Ministry of Agriculture Water and Forestry (MAWF)/Department of Water Affairs, the Committee on Earth Observing Satellites (CEOS)/Working Group on Information Systems and Services (WGISS) and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort began by identifying and prototyping technologies which enabled the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management. This was followed by an international collaboration to build small portions of the identified system which was prototyped during that past few years during the flood seasons which occurred in the February through May timeframe of 2010 and 2011 with further prototyping to occur in 2012. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team also began to examine the socioeconomic component to determine the impact of the SensorWeb technology and how best to assist in the infusion of this technology in lesser affluent areas with low levels of basic infrastructure. This paper provides an overview of these efforts, highlighting the EO-1 usage in this SensorWeb

    Harnessing Systems Engineering Methodology in Using Earth Science Research Data for Real Applications

    No full text
    For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne diseases, forecasts of harmful algal blooms as well as forest fires and wildfires, and the intercontinental transport of dust storms and pollution
    corecore